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BACKGROUND: Guidelines recommend breast and colo-
rectal cancer screening for older adults with a life expec-
tancy >10 years. Most mortality indexes require clinician
data entry, presenting a barrier for routine use in care.
Electronic health records (EHR) are a rich clinical data
source that could be used to create individualized life
expectancy predictions to identify patients for cancer
screening without data entry.
OBJECTIVE: To develop and internally validate a life ex-
pectancy calculator from structured EHR data.
DESIGN: Retrospective cohort study using national Vet-
eran’s Affairs (VA) EHR databases.
PATIENTS: Veterans aged 50+ with a primary care visit
during 2005.
MAIN MEASURES:We assessed demographics, diseases,
medications, laboratory results, healthcare utilization,
and vital signs 1 year prior to the index visit. Mortality
follow-up was complete through 2017. Using the develop-
ment cohort (80% sample), we used LASSO Cox regres-
sion to select ~100 predictors from 913 EHR data ele-
ments. In the validation cohort (remaining 20% sample),
we calculated the integrated area under the curve (iAUC)
and evaluated calibration.
KEY RESULTS: In 3,705,122 patients, the mean age was
68 years and the majority were male (97%) and white
(85%); nearly half (49%) died. The life expectancy calcula-
tor included 93 predictors; age and gender most strongly
contributed to discrimination; diseases also contributed
significantly while vital signs were negligible. The iAUC
was 0.816 (95% confidence interval, 0.815, 0.817) with
good calibration.
CONCLUSIONS: We developed a life expectancy calcula-
tor using VA EHR data with excellent discrimination and
calibration. Automated life expectancy prediction using
EHR data may improve guideline-concordant breast and
colorectal cancer screening by identifying patients with a
life expectancy >10 years.
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L ife expectancy is an underused1,2 but critically important
piece of information for medical decision-making.3,4 Nu-

merous clinical guidelines recommend incorporating life ex-
pectancy into cancer screening decisions5,6 since screening
exposes patients to burdens and risk immediately while the
benefits of decreased cancer mortality occur 10 years later.7–10

Screening patients who have <10 years of life expectancy
exposes them to the potential harms of screening with little
chance of benefit.6,10 To increase the rates of guideline-
concordant cancer screening, there is a clear need for accurate,
easy-to-use life expectancy calculators to appropriately target
cancer screening.
Existing methods for life expectancy estimation have clear

limitations that impair their utility to guide screening deci-
sions. Clinicians often rely on their training and intuition to
estimate life expectancy, but studies have shown that clini-
cians frequently overestimate life expectancy.11 Objective,
data-driven mortality prediction indexes have been developed
and are available at websites such as ePrognosis.com.12–18

However, these mortality indexes are underused,1–3 likely
due in part to the substantial time burden needed for collecting
and inputting patient data into an online calculator.19

A life expectancy calculator embedded within the EHR
would obviate the need for clinicians’ data entry to determine
prognosis. While current clinical alerts are triggered by age,
this EHR-embedded life expectancy calculator could suppress
cancer screening reminders for patients with a limited life
expectancy regardless of age and trigger cancer screening
reminders for older patients with life expectancy ≥10 years.5

Existing mortality prediction indexes include self-reported
physical functioning, which is not routinely captured in the
EHR system. Thus, developing new EHR-based life expec-
tancy calculators is a critical first step to make it easier for
clinicians to provide guideline-concordant care.
As the largest vertically integrated healthcare system in the

US, the Veterans Affairs (VA) is an ideal setting to develop
EHR-based life expectancy calculators to better target CRC
screening. First, the VA has had a longstanding focus on
preventive care.20 Second, studies have found high rates of
colorectal cancer screening among Veterans with high comor-
bidity burden despite the potential for harm in this popula-
tion,21 suggesting that targeting colorectal cancer screening
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through the use of life expectancy may be especially important
within VA. Finally, VA’s EHR provides an ideal setting for
life expectancy calculator development, with a large popula-
tion with >10 years of follow-up and a wide variety of clinical
data elements, including pharmacy, laboratory, and vital sign
data.
Our objective in this study was to use the Veterans Affairs

(VA) EHR database to build a life expectancy calculator for
adults aged ≥50 years. We sought to utilize EHR structured
data elements to develop a model with approximately 100
predictors to accurately estimate life expectancy.

METHODS

Study Population

We used the VA EHR databases to identify all Veterans aged
≥50 using VA primary care in 2005, with mortality follow-up
through 2017. The first primary care visit during 2005 was
designated as the index visit for each patient; we then used a 1-
year “look-back” period prior to the index visit to capture six
domains of predictor variables: demographics, disease diag-
noses, medication use, laboratory results, vital signs, and
healthcare utilization. Of the 3,971,825 VA patients aged
≥50 with outpatient visits during 2005, 3,708,465 had at least
one primary care visit, 3,343 (0.09%) had an invalid date of
death prior to the index primary care visit, resulting in a final
sample size of 3,705,122. We separated our data into an 80%
random sample for model development (n=2,964,098) and the
remaining 20% for model validation (n=741,024).

Predictor Assessment

For disease diagnoses, we collected all ICD-9 diagnosis codes
from the inpatient and outpatient medical SAS files and ap-
plied the Clinical Classifications Software (CCS)22 to create
281 diagnosis groups. The inpatient and outpatient medical
SAS files are constructed by compiling patient-level EHR data
from 170 local VAMedical Center EHR systems to a central-
ized data warehouse.23,24 For medication use, we used the
Veteran Health Administration’s National Drug File (NDF)
to identify 401 unique medication classes from the Pharmacy
Benefits Management file and classified use as any or none in
the past year. For each of the 71 laboratory tests, we created a
five-level variable: normal, abnormal low, abnormal high,
nonsensical values, or not measured. Data on seven vital signs
were extracted from the inpatient and outpatient medical SAS
files: pulse, temperature, systolic blood pressure, respiration,
pain level, BMI (weight and height), and pulse oximetry. In
addition, because weight changes can be strongly indicative of
poor health,25–28 we a priori calculated two variables: weight
range as the largest difference between weights recorded in the
year prior to the index date, and recent weight change as the
difference between the most recent weight and the weight
closest to two weeks prior to the index date. For healthcare

utilization, we created 149 types of healthcare visits according
to visit stop code and categorized visit frequency as zero, one,
or at least two visits. Demographic variables (age, gender, and
race/ethnicity) were extracted from the Clinical Data Ware-
house. Race/ethnicity was included in descriptive characteris-
tics but was not incorporated into model building. We did not
want the observed shorter life expectancies of minority
groups29,30 to influence treatment decisions that could poten-
tially exacerbate existing racial/ethnic inequalities.31 In total,
we obtained 913 predictors from the EHR to use for model-
building.
For missing demographics (other than age) and vital signs

(other than pulse oximetry and pain), we conducted a single
stochastic conditional mean imputation, using a regression
equation with all variables with any missingness included.
Variables with missingness were gender (n=40,615, 1.1%),
race/ethnicity (n=233,221, 6.3%), pulse (n=221,574; 6.0%),
temperature (n=518,032; 14.0%), respiration (n=449,069;
12.1%), weight range (n=967,463; 26.1%), recent weight
change (978,289; 26.4%), systolic blood pressure
(n=215,821; 5.8%), and BMI (626,569; 16.9%).
Prior to modeling, we considered the functional form of

predictor variables. We used a restricted cubic spline with 4
knots for age. We categorized BMI as <18.5, 18.5–25, 25–30,
30–35, >35, systolic blood pressure as <90, 90–104, 105–119,
120–139, 140–159, 160–179, ≥180, and pulse oximetry as
<93, 93–95, ≥96, or no measurement, following commonly
used clinical thresholds.

Outcome Assessment

We used the Veterans Health Administration’s Vital Status
File32 to identify all deaths through December 31, 2017, an
approach with high accuracy compared to the National Death
Index (98% sensitivity and 98% specificity).33

Statistical Analysis

We first examined baseline characteristics of the development
and validation cohorts. Using the development cohort
(n=2,964,098), we built our life expectancy prediction model
in two phases: variable selection and model coefficient esti-
mation. Two phases were needed because current statistical
software does not allow least absolute shrinkage and selection
operator (LASSO) regression in parametric survival models.
In the first variable selection phase of model development,

we applied a LASSO Cox proportional hazards regression
with a BIC-optimized lambda. To determine this lambda, we
evaluated a sequence of 100 lambda values and chose the
lambda that gave us the lowest BIC with <100 predictors.
We sought to build a model with approximately 100 predictors
after considering several factors. First, while there is little
penalty for including additional predictors in EHR models
(since additional data collection or data entry is not required),
models with greater number of predictors are more likely to be
overfit,34 leading to reduced generalizability to different time
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periods or slightly different patient populations. In addition,
we found little difference in discrimination between models
with all 913 predictors and 80 predictors. Thus, a ~100 pre-
dictor model appears to best balance optimizing model dis-
crimination with maximizing model generalizability.
In the second coefficient estimation phase of model devel-

opment, we used the variables selected from LASSO Cox
regression and fit a Gompertz survival model in the develop-
ment cohort (n=2,964,098). We chose a parametric survival
model to allow for life expectancy predictions beyond the
observed follow-up time. Of the numerous parametric survival
distributions, Gompertz is most appropriate for human mor-
tality curves because it fits the observed doubling in mortality
rate with each decade of life.35

To internally validate our model in the validation cohort
(n=741,024), we calculated the integrated area under the curve
(iAUC),36,37 which is a weighted average of the areas under
the time-varying receiver operator characteristic curves at all
possible cutpoints. We graphed the iAUC to display the AUC
over time and at three time points of interest: 2 years, 5 years,
and 10 years. We evaluated model calibration by creating
ventiles (20 bins) of predicted life expectancy and comparing
the mean of the predicted 10th percentile of life expectancy
within each group to the observed 10th percentile of life
expectancy within each group (time to 10% mortality).
To identify which domains of predictors (demographics,

diseases, medications, labs, vital signs, and healthcare utiliza-
tion) most strongly contributed to discrimination in the final
model, we evaluated a series of models. First, we fit a
Gompertz model with each domain of predictors alone, with-
out any other predictors. Since demographics are known to
have strong predictive power, we next fit models with demo-
graphics plus each domain of predictors separately. Finally,
we evaluated the effect of removing one domain of predictors
from the full model, fitting models with 5 of 6 domains.We fit
all models in the development cohort and calculated the iAUC
in the validation cohort.
To provide an example of the output a clinician would see

from this life expectancy calculator, we generated two test
cases, “Mr. Unhealthy” and “Mr. Healthy,” taken from indi-
viduals at the 10th and 80th percentiles of predicted median
life expectancy, respectively. For each test case, we presented
the 25th, 50th, and 75th percentile of predicted life expectan-
cy, as well as the predicted probability of mortality within 2
years, 5 years, and 10 years. To provide an interpretation, the
25th percentile of life expectancy means that the individual
has a 25% chance of dying before that time, while the median
life expectancy is the time at which an individual has a 50/50
chance of being alive. All 95% confidence intervals for life
expectancy estimates were ≤0.1 year and thus were not
presented.
We conducted sensitivity analyses to ensure results were

similar across clinically important subgroups. We examined
iAUC and calibration plots across subgroups defined by age,
gender, race/ethnicity, and presence of cancer.

RESULTS

There were 2,964,098 patients in the development cohort and
741,024 patients in the validation cohort. Baseline character-
istics were essentially the same in the two cohorts (Table 1).
The mean age was 68.0 years, 97% were male, 85% were
white, and 11% were black. The mean BMI was 28.9. Over
half of patients had ≥8 diseases and 42% had ≥6 medications.
During a median of 12.1 years of follow-up, 49% of patients
died (1,453,767 in the development cohort and 362,934 in the
validation cohort).
The final life expectancy calculator had 93 predictors from

six domains: 2 demographic predictors (age and sex), 39
disease predictors, 28 medication predictors, 14 laboratory
predictors, 4 vital sign predictors, and 6 healthcare utilization
predictors (Supplemental Table S1). The iAUC was 0.816 in
the development cohort and 0.816 in the validation cohort
(95% confidence interval in the validation cohort: 0.815,
0.817). The AUC was consistently around 0.8 throughout
follow-up time in the validation cohort (Figure 1), with the
lowest value of 0.803 at 2 years and increasing to 0.809 at 5
years and 0.830 at 10 years.
Several predictors had a counterintuitive association with

mortality. For example, osteoarthritis, benign neoplasms, and
upper respiratory infections were all associated with decreased
mortality risk and longer life expectancy. To determine the
relative importance of these counterintuitive factors, we con-
ducted sensitivity analyses examining the discrimination of
models with these 3 factors removed and found that removing
these factors led to trivial declines in iAUC (0.8162 full model,
0.8156 model without 3 counterintuitive factors)
(Supplemental Table S2). Since our primary goal was to
maximize discrimination and previous prediction studies have
also shown counterintuitive factors,38 we elected to retain our
counterintuitive factors in our prediction model.
The model was well calibrated in the validation cohort.

Across 20 bins of predicted life expectancy, the observed time
to 10% mortality aligned with the predicted 10th percentile of
life expectancy (Figure 2). For example, in the 15th ventile,
the predicted 10th percentile of life expectancy was 5.2 years
and the observed time to 10% mortality was 5.5 years. For
individuals with predicted median life expectancy <12 years,
predicted and observed time to 50% mortality was well
aligned. In the 6th ventile, the predicted median life expectan-
cy was 9.2 years and the observed time to 50% mortality was
8.6 years.
In subgroups defined by age, gender, race/ethnicity, and

presence of cancer, the life expectancy calculator showed
good discrimination and calibration (Supplemental
Table S3). Across age groups, discrimination was good but
notably lower than the overall sample, likely due to strong
predictive power of age (range of iAUC stratified on age:
0.743–0.776). Discrimination was very similar by race and
presence of cancer, while discrimination was better in women
(iAUC: 0.860) than men (iAUC: 0.814). Calibration was
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excellent by gender, race/ethnicity, and presence of cancer
(Supplemental Figure S1); within age groups, calibration
was excellent for ages ≥65 and good for ages 50–64.
As expected, diseases and demographics contributed highly

to discrimination (Figure 3). Including only age and gender
produced a model with an iAUC of 0.710, including only
diseases produced an iAUC of 0.725, while including only
healthcare utilization produced an iAUC of 0.516. When
adding to a demographics-only model, the iAUC was highest
when including diseases (0.790). Removing demographics

from the full model had the largest impact (iAUC drop of
0.0403 to 0.7760), while removing healthcare utilization had a

negligible impact (iAUC drop of 0.0007 to 0.8156).

In the example output for “Mr. Healthy” (Table 2), predict-
ed 25th percentile life expectancy was 13.7 years and predict-
ed median life expectancy was 20.7 years, indicating that
cancer screening would be recommended. In contrast, Mr.
Unhealthy’s predicted median life expectancy is only 5.4
years, and his 75th percentile life expectancy is 8.8 years,
indicating that cancer screening would be more likely to harm
than help.

DISCUSSION

We developed and internally validated a life expectancy pre-
diction calculator using structured data from the VA EHR; our
final model included 93 predictors and had an iAUC of 0.816.
As expected, diseases and demographics were the strongest
contributors to high discrimination. Our model demonstrated
good calibration overall and across demographic subgroups.
Our life expectancy calculator performs comparably to

other long-termmortality risk tools that had C-statistics around
0.8,12–14,16,39 but has two notable differences. First, our life

Figure 1. AUC over time from life expectancy calculator. overall, the
iAUC was 0.8162 (0.8153, 0.8171)

Table 1 Baseline Characteristics of Veteran’s Affairs Primary Care Patients Aged 50+ in 2005, n=3,705,122

Characteristic Development cohort
N=2,964,098

Validation cohort
N=741,024

Demographics
Age, mean ± SD 68.0 ± 10.4 68.0 ± 10.4
Male 2,822,115 (96.5) 714,705 (96.5)
Race/Ethnicity

Non-Hispanic White 2,537,088 (85.3) 631,848 (85.3)
Non-Hispanic Black 331,548 (11.2) 83,058 (11.2)
Other 95,462 (3.2) 26,118 (3.5)

Vital signs
BMI, mean ± SD 28.9 ± 5.5 28.9 ± 5.5
Systolic blood pressure, mean ± SD 134.7 ± 18.6 134.6 ± 18.6
Laboratory values*

Albumin 4.1 [3.8, 4.3] 4.1 [3.8, 4.3]
Serum creatinine 1.1 [0.9, 1.3] 1.1 [0.9, 1.3]
LDL, mean ± SD 104.5 ± 35.1 104.5 ± 35.1
HbA1c, mean ± SD 6.8 ± 1.6 6.8 ± 1.6

Diseases (per person)
0–1 131,696 (4.4) 32,830 (4.4)
2–4 528,927 (17.8) 132,306 (17.9)
5–7 808,827 (27.3) 202,364 (27.3)
8+ 1,494,648 (50.4) 373,524 (50.4)

Medications (per person)
0 481,438 (16.2) 120,313 (16.2)
1–2 434,173 (14.7) 108,295 (14.6)
3–5 812,765 (27.4) 203,496 (27.5)
6+ 1,235,722 (41.7) 308,920 (41.7)

Healthcare utilization
Number of hospitalizations, median [25th, 75th percentiles] 0 [0, 0] 0 [0, 0]
Number of emergency department, visits, median [25th, 75th percentiles] 0 [0, 0] 0 [0, 0]
Number of outpatient visits, median [25th, 75th percentiles] 2 [1, 4] 2 [1, 4]

Died within 2 years 233,626 (7.9) 57,840 (7.8)
Died within 5 years 600,316 (20.3) 150,061 (20.3)
Died within 10 years 1,200,848 (40.5) 300,048 (40.5)

Values are n (%) unless noted as mean ± SD, or median [25th, 75th percentiles]
*Laboratory values were categorized as normal, abnormal low, abnormal high, nonsensical values, or not measured. Albumin was not measured in
44% of both the development and validation cohorts. Serum creatinine was not measured in 30% of the development and validation cohorts. LDL was
not measured in 44%of the development and validation cohorts. HbA1c was not measured in 72% of the development and validation cohorts
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expectancy calculator used EHR data while other mortality
risk tools relied on self-reported data from questionnaires.12–
16,40 Using structured data elements from the EHR, we were
able to consider nearly one thousand predictors rather than
several dozen predictors considered in other models. Our life
expectancy calculator included many more predictors than
other indexes because it was designed to be embedded within
the EHR, unlike previous mortality risk indexes that rely on
self-reported data and clinician data entry. To our knowledge,
only the Mathias mortality risk prediction equation used EHR
data from a single multi-specialty group practice; they applied
predictive mining to select 24 predictors from 980 possible
predictors in approximately 8,000 patients.39

The second major difference is that our calculator predicts
remaining life expectancy, while other indexes generally only
predict mortality risk at one specific time point. Most mortality
risk prediction tools are for short-term mortality (≤5

years);39,40 only a few predict ≥10-year mortality risk, which
is needed for cancer screening.13,16,18 Of other indexes, only
the Lee index predicts life expectancy.15 Remaining life ex-
pectancy is difficult to predict because it requires extended
follow-up time and relatively high cumulative mortality to
generate accurate predictions. The benefit is that life expec-
tancy is more intuitive for patients and provides a more com-
plete picture than mortality risk at a single time.
Our model had better discrimination among females, who

were approximately 3% of the study sample, compared to
males. We believe this may be due to the fact that women in
our VA population were substantially younger than men
(mean age 63 vs. 68 for men). Previous studies have shown
that measures of discrimination are higher for mortality index-
es in younger populations compared to older populations.41

Ultimately, it is reassuring that the model performs well in
women, even though they were only 3% of the data, suggest-
ing that our life expectancy predictions can be used to target
breast cancer screening.
Consistent with other mortality prediction tools, we did not

incorporate race/ethnicity into our life expectancy calcula-
tor.12,14,16 While non-white individuals tend to have shorter
life expectancies,29,30 prediction algorithms incorporating
race/ethnicity may perpetuate and exacerbate existing dispar-
ities and racism in the medical system.31 However, excluding
race/ethnicity from algorithms can still lead to racially biased
models,42 and machine learning approaches may be particu-
larly prone to encode racial/ethnic bias in the healthcare sys-
tem.43–45 We took numerous steps to minimize potential racial
bias, including manual variable cleaning and specification
(e.g., assigning all laboratory values to one of five categories).
We welcome the development of “algorithmic stewardship”
that will advance the equitable development and use of pre-
diction tools in clinical medicine.46,47

Uncertainty is inherent in the prediction of all future events,
and we have quantified this uncertainty in the interquartile
range for an individual’s predicted life expectancy. While
predictions of “very high” risk or “almost no” risk are easier
to understand, communicate, and act upon, many modern
clinical decisions rely on modest risk of future events, includ-
ing predicted cardiovascular risk for statin medications48 and
predicted fracture risk for osteoporosis medications.49 We
believe it is critical to acknowledge the uncertainty and to
have this uncertainty inform the acceptable level of risk and
possibility of benefit.50 While some patients may want to
make decisions based on the most likely scenario, others
may want to continue with treatments even if they have a
small chance of benefitting. Eliciting and clarifying these
preferences is a core component of shared decision-making.51

Explicitly noting the prediction uncertainty will enable nu-
anced discussions between clinicians and patients.
Our work has clear implications. Programming our life

expectancy calculator into the VA EHR can improve
guideline-concordant care for numerous preventive therapies
with different times to benefit, acting at both the patient level

Figure 2. Calibration plot of predicted vs. observed remaining life
expectancy. Each point represents a ventile (1/20) of the validation

cohort, representing 37,051 patients. In panel A, 3 lowest-risk
ventiles could not be shown since <10% of patients in those ventiles
had died by the end of follow-up. In panel B, 9 lowest-risk ventiles
could not be shown since <50% of patients in those ventiles had died

by the end of follow-up
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and at the system level. For an individual patient, the median
life expectancy provides the best estimate of the remaining
lifetime. From a systems perspective, integration into the EHR
will enable widespread uptake as well as tailoring of clinical
decision support systems. For example, clinical reminders for
colorectal cancer screening can be suppressed for patients with
a life expectancy <10 years instead of using age-based cutoffs,
thereby reducing inappropriate screening among younger
sicker patients. Similarly, clinical reminders could be triggered
for adults who are outside of the usual age range for colorectal
cancer screening but have >10 year life expectancy and thus
may benefit from screening.52,53 Using life expectancy rather
than age will also help minimize unintended harms of quality
measures.21 This life expectancy calculator can be replicated
in other EHR settings to improve guideline-concordant care
beyond the VA.
Our study had noteworthy strengths. First, we were able to

evaluate nearly 1000 predictor variables in 3.7 million Vet-
erans. Second, we used state-of-the-art methods (LASSO Cox
regression and Gompertz regression) to build our final model,
after determining that machine learning methods would

provide not clinically significant improvements in model per-
formance.54,55 Finally, we demonstrated that our model was
well-calibrated and had high discrimination in numerous
subgroups.
Our study had limitations. First, the performance of our life

expectancy calculator outside of the VA population is unclear;
future studies should validate and/or develop new EHR-based
prediction indexes in non-VA populations, particularly given
that women made up only 3% of our sample. Our calculator
can be translated to other EHR systems using the OMOP
Common Data Model.56 Second, we were not able to incor-
porate other risk factors that influence mortality, including
social risk factors and physical function. Third, we were only
able to incorporate healthcare utilization within the VA sys-
tem, while some Veterans receive care at outside medical
institutions. Fourth, life expectancies >12 years are model
extrapolations to be interpreted with caution. However, these
extrapolations will have little impact on clinical utility, since
any life expectancy >10 years indicates likely to benefit from
cancer screenings. Fifth, the presence of counterintuitive fac-
tors may concern some users and slow widespread adoption.

.5

.55

.6

.65

.7

.75

.8

IA
U

C

Add to Empty Model

.7

.725

.75

.775

.8

IA
U

C

Add to Demographics Model

.7

.725

.75

.775

.8

IA
U

C

Subtract from Full Model

Demographics (p=2)
Diseases (p=39)
Medications (p=28)
Lab Results (p=14)
Vital Signs (p=4)
Healthcare Utilization (p=6)

Figure 3 The contributions of different domains of variables to iAUC in the validation cohort

Table 2 Sample Output from Life Expectancy Prediction Calculator: Life Expectancy Prediction and Predicted Probability of Mortality

Life expectancy prediction (years) Predicted probability (%) of
mortality

25th percentile life
expectancy (time to 25%
mortality risk)

Median life expectancy
(time to 50% mortality
risk)

75th percentile life
expectancy (time to 75%
mortality risk)

Within 2
years

Within 5
years

Within 10
years

Example 1: “Mr.
Healthy”

13.7 years** 20.7 years** 26.6 years** 2.0% 5.9% 15.2%

Example 2: “Mr.
Unhealthy”

2.6 years 5.4 years 8.8 years 19.1% 46.7% 81.7%

**These data are beyond the observed follow-up time and are model extrapolations; use caution when interpreting
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However, as “black box” prediction algorithms (i.e., neural
networks for breast cancer histology)57 becomemore common
in clinical medicine, we believe that users will increasingly
focus more on predictive accuracy and less on model trans-
parency.58 Finally, predictions may not be accurate for pa-
tients with rare diseases.
In conclusion, we developed and internally validated a life

expectancy calculator with excellent discrimination and cali-
bration using EHR data for Veterans aged ≥50 years. With
excellent calibration across 1 to 10 years of mortality predic-
tion, our life expectancy calculator could be useful for a wide
variety of clinical decisions, such as statin treatment and
glycemic control. Accurate estimates of life expectancy are
critical for breast and colorectal cancer screening and building
in such estimates into the EHR system will be a critical
foundational step in improving the rates of individualized,
guideline-concordant care.
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